30. Multiprocessing Module
This Python snippets demonstrating the use of the multiprocessing module to run parallel processes for CPU-bound tasks:
1. Basic Multiprocessing Example
from multiprocessing import Process
def print_numbers():
for i in range(5):
print(f"Process: {i}")
if __name__ == "__main__":
process = Process(target=print_numbers)
process.start()
process.join()2. Passing Arguments to a Process
from multiprocessing import Process
def print_range(start, end):
for i in range(start, end):
print(f"Range {start}-{end}: {i}")
if __name__ == "__main__":
process = Process(target=print_range, args=(1, 6))
process.start()
process.join()3. Using a Pool of Processes
4. Process Synchronization with Lock
5. Sharing Data with Value and Array
Value and Array6. Using a Queue for Process Communication
7. Using Manager for Shared State
8. Using Pool.apply_async for Asynchronous Processing
Pool.apply_async for Asynchronous Processing9. Using Process with Daemon
Process with Daemon10. Using Barrier for Synchronization
These examples cover the basics of multiprocessing, including communication, synchronization, data sharing, process pools, and daemon processes.
Last updated