207. JIT Compilation with PyPy
🔹 1. Checking if Your Code is Running on PyPy
import platform
if platform.python_implementation() == "PyPy":
print("Running on PyPy!")
else:
print("Not running on PyPy!")🔹 2. Simple Function Benchmark (CPython vs. PyPy)
import time
def compute():
total = 0
for i in range(10**7):
total += i
return total
start = time.time()
compute()
end = time.time()
print("Execution time:", end - start)🔹 3. Loop Optimization with PyPy JIT
🔹 4. Using __pypy__ Module for Extra Performance
__pypy__ Module for Extra Performance🔹 5. Faster Dictionary Lookups with __pypy__
__pypy__🔹 6. Using PyPy for Faster Recursive Functions
🔹 7. Faster String Concatenation in PyPy
🔹 8. Optimizing Integer Arithmetic
🔹 9. Using NumPy with PyPy for Even Faster Performance
🔹 10. Comparing CPython vs. PyPy Performance
🚀 Why PyPy is Faster?
Feature
Benefit
🚀 Running the Code in PyPy
🚀 Final Thoughts
Last updated